lundi 19 février 2018

Quelques réflexions à propos du rapport Villani-Torossian


http://www.education.gouv.fr/cid126423/21-mesures-pour-l-enseignement-des-mathematiques.html
Pour répondre aux problèmes de l’enseignement des mathématiques qu’il décrit et analyse, le rapport Villani-Torossian est structuré par deux lignes de force : la formation des enseignants d’une part et d’autre part les relations entre enseignement et recherche, en tant que celle-ci doive éclairer celui-là.  On peut s’en réjouir, mais avec une réserve : la rédaction est manifestement sous-tendue par une conception de la recherche réduite aux sciences cognitives et à la psychologie, voire aux mathématiques. Ainsi la recherche en didactique des mathématiques parait-elle absente ; quoique certains perçoivent sa prise en compte lorsque le rapport évoque la recherche qui doit être conduite dans les classes et la capitalisation sur l’expérience des enseignants. Vieux chercheur en didactique des mathématiques, mon désir est fort de protester et de rappeler les décennies de développement d’une recherche académique internationale à laquelle nous participons activement et d’une façon reconnue. Mais cela serait vain, car on sera rapidement confronté à la question de savoir à quoi cela a servi, et en quoi l’enseignement et l’apprentissage des mathématiques en ont bénéficié.  Il faudra alors remonter dans l’histoire. Rappeler, par exemple, la fragilisation des IREM, la mise à mal de la formation, la précarité récurrente de la recherche universitaire dans ce domaine. Ce ne serait que piètre défense, bien que tout cela ait miné tous nos efforts. La meilleure réponse me parait être ailleurs : dire les résultats de ces recherches, qu’elles aient été conduites dans des équipes universitaires ou dans les IREM, faire le bilan des connaissances rapidement utiles pour les enseignants, faire des propositions de formation initiale ou continue.

« Il semble nécessaire de proposer des enseignements de didactique en mathématiques, qui permettent l'appropriation des enjeux d'apprentissage des savoirs, leur reconnaissance dans les activités scolaires proposées aux élèves, la prise en compte des difficultés récurrentes et ce, dans les différentes facettes de l'exercice d’un futur métier » (p.45). Il faut, bien sûr, proposer de tels enseignements. Nous l’avons fait, nous savons le faire. Comme tout enseignement, les contenus de ces formations s’appuieront sur des connaissances explicites, validées par la recherche en didactique des mathématiques. Comme toute formation universitaire, c’est le lien entre formation et recherche qui garantit la qualité et la pertinence de ces enseignements ; il est indispensable que l’une et l’autre soient confortées.

La cinquième des principales mesures proposées par le rapport, « les étapes d’apprentissage­­­­ », et la sixième, « le cours », soulignent des thèmes sur lesquels nous pouvons faire rapidement des propositions concrètes de contenu et d’action.

La cinquième mesure énonce :
« Dès le plus jeune âge mettre en œuvre un apprentissage des mathématiques fondé sur la manipulation et l’expérimentation ; la verbalisation ; l’abstraction. »  
Cette mesure est en résonnance évidente avec les concepts et les modèles de la théorie des situations didactiques. La mise en œuvre d’un tel apprentissage appelle la conception et l’organisation dans la classe de situations adaptées et favorables. C’est à cela que répond la séquence classique – situation d’action, situation de communication, situation de validation – modélisée par la théorie des situations didactiques (et à quoi elle ne se réduit pas). Il est à ce sujet important de souligner que si ce séquencement est celui de l’apprentissage, il est à l’inverse du séquencement de la conception des situations : les connaissances dont l’apprentissage est visé déterminent les types de validation qui eux-mêmes requièrent des compétences langagières et des représentations. La situation d’action est la porte d’entrée dans le processus d’apprentissage en engageant des connaissances initialement disponibles qui évolueront, se modifieront ou seront rejetées et remplacées par les connaissances visées. L’enseignant est présent tout au long de ce parcours, il crée les conditions de l’engagement de l’élève, il l’accompagne en adaptant ses interventions et, au bout du chemin, il identifie, nomme, ce qui est appris. Dans ce cadre, on le comprend, l’erreur n’est pas une faute mais appartient de façon naturelle aux efforts d’exploration, aux tentatives de solution ; elle est constitutive de l’apprentissage (p.15). Enfin, de telles situations « sollicitent [la] créativité [des élèves], développent leur motivation, encouragent leur esprit d’autonomie et d’initiative » (p.58). L’ingénierie didactique rassemble les méthodes et les outils pour concevoir de telles situations et leurs séquencements en s’appuyant sur les modèles et les concepts de la théorie des situations. Elle répond pleinement à la volonté d’apporter à l’enseignant « [qui] ne se voit pas comme un technicien "exécutant" mais comme un professionnel » les connaissances pour le rendre « capable d’analyser sa propre pratique » (p.19). En adoptant l’ingénierie didactique comme approche structurante, la formation s’articulera sur « la pratique du métier, permettant ainsi aux enseignants de s’approprier des notions de didactique des mathématiques, de la maternelle au cycle 3 » (p.13).

La situation de validation est une étape, en quelque sorte, terminale du cheminement vers la notion mathématique qu’il faudra encore expliciter pour qu’elle prenne sa place dans le corpus enseigné, puis travailler pour se l’approprier pleinement. Elle est aussi le point de départ de la construction de l’enseignement. Cette centralité correspond à l’indispensable prise de conscience, par les élèves, du problème de la validité de ce qu’ils apprennent. Cette prise de conscience fonde la culture scientifique et citoyenne bien au-delà des mathématiques elles-mêmes. Elle est indispensable à la compréhension de ce que sont les mathématiques, le rapport est sur ce point très explicite : « la notion de preuve est au cœur de l’activité mathématique, quel que soit le niveau (de façon adaptée, cette assertion est valable de la maternelle à l’université) » (p.25).

Ainsi la sixième mesure énonce-t-elle :
« Rééquilibrer les séances d’enseignement de mathématiques : redonner leur place au cours structuré et à sa trace écrite ; à la notion de preuve ; aux apprentissages explicites. »
Il y a quelques décennies, il n’aurait été question que de la démonstration. L’accent mis ici sur la notion de preuve est significatif. Il permet notamment de vouloir sa présence dès le cycle 1 et d’envisager l’apprentissage dans la durée. L’apprentissage de la démonstration sera alors une étape particulière, préparée par la prise de conscience progressive de la nature et du rôle de la preuve, et l’acquisition de compétences de validation associées au fil du développement de la connaissance. La section 3.1.2 du rapport dédiée à « La preuve » (pp.25-26), par la variété des formulations, illustre toute la difficulté de cet enseignement : « démarche de justification argumentée », « formes d’argumentation propres aux mathématiques », « démonstration » ; la même difficulté se retrouve dans les programmes de 2016 (compétences mathématiques, raisonner). Argumentation, preuve, démonstration ne sont pas synonymes, ces termes renvoient à des productions dont les caractéristiques sont différentes, et sont le produit d’activités – argumenter, prouver, démontrer – qui n’ont ni la même nature, ni la même fonction dans les mathématiques et leur pratique collective, ni la même complexité conceptuelle et langagière. Depuis une trentaine d’années, la recherche en didactique des mathématiques a largement documenté ces questions et produit des résultats sur lesquels on peut s’appuyer. Il est remarquable que les recherches internationales dans ce domaine se soient si largement multipliées, avec la publication de très nombreux articles, livres et la tenue de conférences. La formation des enseignants sur l’enseignement de la preuve, dès les premières années, pourra ainsi s’appuyer sur un large corpus de résultats et d’exemples de situations de classes utilisées pour ces recherches.

La didactique des mathématiques est déjà une composante des enseignements dispensés par les ESPE. Cette formation s’appuie, chaque fois que cela est possible, sur des équipes de recherche. Le rapport montre pleinement son importance, il faut saisir cette opportunité. Certes, très malheureusement, le texte parait ignorer ces recherches et leurs liens forts et anciens avec la formation tant initiale que continue. Plutôt que d’exprimer des regrets et des protestations qui ne seront pas entendues, nous devons avancer, avancer encore, avancer mieux.

Une suggestion ? Créer une base de données constituée des ingénieries bases des dispositifs expérimentaux (projets, thèses, etc.) en les documentant de façon normalisée (objectif, script, bénéfices, limites, etc.).  Les utilisateurs, des enseignants mais pas seulement, pourront adapter ces propositions et documenter en retour. En complément des travaux théoriques, des exposés de concepts, méthodes et de la publication des résultats, une telle ressource approfondira encore le lien entre recherche et pratique. Je ne sous-estime ni la complexité, ni le risque que courent les transferts trop hâtifs de dispositifs expérimentaux vers la classe. Mais le défi vaut d’être relevé avec les formateurs et les enseignants.  Je pense que c’est un moyen de répondre assez directement et précisément au souhait formulé par le rapport Villani-Torossian : « La formation doit permettre aux enseignants de s’approprier des ressources avec toute la distance critique nécessaire, pour concevoir des situations d’enseignement riches. » (p.13).

Aucun commentaire:

Enregistrer un commentaire