mardi 14 mai 2019

L'argumentation mathématique, précurseur problématique de la démonstration

Le colloque CORFEM 2019 a choisi pour l'un de ses thèmes : Raisonner, prouver, démontrer ... en classe et en formation.

Je contribuerai à la réflexion commune en interrogeant les termes argumenter, prouver, démontrer tels qu'ils sont utilisés par les programmes des cycles 2 à 4, et par les documents d'accompagnement. Je préciserai leurs relations et celles qu'ils entretiennent avec "raisonner" à la lumière des travaux de recherche sur l'apprentissage de la preuve en mathématiques. La seconde partie fera le point, prenant en compte les contributions internationales, sur les problèmes posés par le passage des preuves empiriques aux preuves intellectuelles ne mathématique, en mettant l'accent sur le cas de l'exemple générique. L'exposé conclura sur la création et la gestion des interactions sociales qui contextualisent l'argumentation et constituent le principal défi pour l'enseignant ; un défi auquel doit préparer la formation.


XXVIe Colloque CORFEM
Mardi 11 et mercredi 12 Juin 2019
Université de Strasbourg

L'argumentation mathématique, un concept nécessaire

L'argumentation mathématique, un concept nécessaire pour penser l’apprentissage de la démonstration

Les sciences du langage, notamment l’analyse du discours et la logique naturelle, ont eu une influence prépondérante sur les premières recherches sur l’apprentissage de la démonstration qui ont insisté sur les oppositions entre argumentation et démonstration. Ces oppositions sont mises en avant comme l’une des principales difficultés—avec le développement cognitif—de la réalisation du projet d’enseignement. Au cours des deux dernières décades, les travaux se sont multipliés pour confirmer cette difficulté mais en la nuançant soit en montrant la possibilité d’une continuité, notamment dans le cours de la résolution d’un problème, soit en soutenant la possibilité d’une légitimité mathématique de l’argumentation. Ainsi l’argumentation se constitue-t-elle en obstacle épistémologique à l’apprentissage de la démonstration, au sens où elle est à la fois ce contre quoi il se construit et ce avec quoi il avance. De plus, l’attention portée à l’argumentation dans la résolution de problèmes a conduit à dépasser les approches purement heuristiques et mis en évidence le lien étroit entre le développement de la rationalité et celui des connaissances mathématiques depuis les niveaux les plus élémentaires. L’exposé portera essentiellement sur ces évolutions de la recherche, et les propositions de concepts tels qu’argumentation heuristique (Raymond Duval) ou explication ontique (Gila Hanna). Il conclura sur le besoin de forger le concept d’argumentation mathématique pour penser l’apprentissage de la démonstration.




7e Journées Épistémologie Montpellier
« L’argumentation : une pratique multiforme ? »
Mercredi 22 et jeudi 23 mai 2019
salle SC-10.01 à la Faculté des Sciences

Séminaires DEMa, Montpellier, quelques question sur le modèle cKȼ

Une visite à l'équipe montpelliéraine de Didactique et Épistémologie des Mathématiques (DEMa) sera l'occasion, le 21 mai, d'un séminaire sur le modèle cKȼ pour répondre à quelques questions notamment sur les structures de contrôles, la notion de µ-objet et celle de théorème au sens de Mariotti.
L'exposé comprendra trois parties : (1) la problématique du modèle cKȼ dans le cadre de la théorie des situations didactiques et de la théorie des champs conceptuels, (2) la caractérisation des conception en insistant sur la notion de contrôle et la notion de µ-objet, (3) son potentiel pour analyser la complexité épistémique des mathématiques en revenant notamment sur la notion d’unité cognitive  dans la résolution de problème proposée par Garuti, Boero et Lemut, et la caractérisation de théorème par Mariotti.